Preliminary communication

Aromatic lead(IV) compounds II. PMR spectroscopy of some aryllead tricarboxylates

D. DE VOS and J. WOLTERS

Gorlaeus Laboratories, P.O. Box 75, University of Leiden (The Netherlands) (Received April 17th, 1972)

In a preceding paper¹ we reported the preparation of some aryllead triacetates. The PMR spectra of these compounds were found to be of unusual interest.

With the element lead only the isotope 207 Pb (natural abundance $21.6\%^{2*}$) has a nuclear moment of ½. For aryllead tricarboxylates this means that the phenyl protons in the PMR spectra show signals in the region of ~ 7 ppm due to the species containing non-magnetic lead isotopes, and well separated signals due to the species containing the magnetic 207 Pb. The PMR spectra of aryllead-207 carboxylates can be considered as first order for the compounds studied, since the coupling of 207 Pb with the protons of the phenyl ring is large.

Tables 1, 2 and 3 show details of the spectra of 2,4,6-trimethoxy-, 2,4-dimethoxy-, and *p*-methoxy-phenyllead triacetate, respectively. In Table 4 the ²⁰⁷Pb-H coupling constants for some *para* substituted aryllead triacetates are given ******.

TABLE	1
-------	---

δ(ppm)	Ratio peak areas	Protons
2.09 s	9	
3.81 s	3	4-OCH
3.86 s	6	2,6-OCH
6.17 s	2	$H_{3,5} = J(^{207}Pb-H_{3,5})$ 166 Hz

^{*}We confirmed this percentage from the peak areas of the phenyl protons of magnetic and non magnetic species.

^{}** The coupling constants for phenyllead triacetate, prepared by the method of Criegee⁴, are: $J(^{207}Pb-H_{ortho})$ 361, $J(^{207}Pb-H_{meta})$ 165 and $J(^{207}Pb-H_{para})$ 71 Hz.

J. Organometal. Chem., 39 (1972)

TABLE 2

δ(ppm)	Ratio peak areas	Protons	1
2.11 s	9	-0000	H ₃
3.83 s	3	4-OCH,	-
3.89 s	3	2-OCH	,
6.53 d	1	H,	$J(H_3-H_5)$ 2.5 Hz
6.63 q	1	н́,	••••
7.61 d	1	H	J(H ₅ -H ₆) 9 Hz

TABLE 3

δ(ppm)	Ratio peak areas	Protons
2.15 s	9	-00CCH ₃
3.83 s	3	4-OCH,
7.02 d	2	H _{3,5}
7.53 d	2	$H_{2,6}^{J,0} = J(H_2 - H_3) 9 Hz$

TABLE 4

Compound	J(²⁰⁷ Pb-H _{ortho}) (Hz)	J(²⁰⁷ Pb-H _{meta}) (Hz)
<i>p</i> -Methoxyphenyllead triacetate	327	121
p-Ethoxyphenyllead triacetate	334	125
p-n-Butoxyphenyllead triacetate	330	129
p-Phenoxyphenyllead triacetate	332	125

We studied also the influence of the carboxylate group in some 2,4dimethoxyphenyllead tricarboxylates on $J(^{207}Pb-H)$. The results are given in Table 5. It appears that there is a positive charge on the lead atom, the magnitude of which depends on the electron-withdrawing capacity of the carboxylate group.

TABLE 5

Compound	J(²⁰⁷ Pb-H ₃) (Hz)	J(²⁰⁷ Pb-H ₅) (Hz)	J(²⁰⁷ PЪ-Н ₆) (Hz)
2,4-Dimethoxyphenyllead tripropionate ^a	185	96	383
2,4-Dimethoxyphenyllead triacetate	187	99	386
2,4-Dimethoxyphenyllead tris(monochloroacetate) ^a	212	113	408

^aThe synthesis of this compound will be published.

J. Organometal. Chem., 39 (1972)

More detailed studies of the spectroscopic characteristics of aryllead tricarboxylates are in hand at this laboratory³.

The spectra were recorded on a Jeol PS 100 NMR apparatus (in CDCl₃, reference TMS) by Mr. C. Erkelens.

REFERENCES

- 1 L.C. Willemsens, D. de Vos, J. Spierenburg and J. Wolters, J. Organometal. Chem., 39 (1972) C61.
- 2 R.C. Weast and S.M. Selby (Eds.), *Handbook of Chemistry and Physics*, 48th ed., Chemical Rubber Co., Cleveland (Ohio), 1968.
- 3 D. de Vos, Thesis University of Leiden, in preparation.
- 4 R. Criegee, P. Dimroth und R. Schempf, Chem. Ber., 90 (1957) 1337.

J. Organometal, Chem., 39 (1972)